Models
Built-in models
PyGPT has built-in support for models (as of 2024-11-27):
bielik-11b-v2.2-instruct:Q4_K_M
chatgpt-4o-latest
claude-3-5-sonnet-20240620
claude-3-opus-20240229
codellama
dall-e-2
dall-e-3
gemini-1.5-flash
gemini-1.5-pro
gpt-3.5-turbo
gpt-3.5-turbo-1106
gpt-3.5-turbo-16k
gpt-3.5-turbo-instruct
gpt-4
gpt-4-0125-preview
gpt-4-1106-preview
gpt-4-32k
gpt-4-turbo
gpt-4-turbo-2024-04-09
gpt-4-turbo-preview
gpt-4-vision-preview
gpt-4o
gpt-4o-2024-11-20
gpt-4o-audio-preview
gpt-4o-mini
llama2-uncensored
llama3.1
llama3.1:405b
llama3.1:70b
mistral
mistral-large
o1-mini
o1-preview
All models are specified in the configuration file models.json
, which you can customize.
This file is located in your working directory. You can add new models provided directly by OpenAI API
and those supported by LlamaIndex
or LangChain
to this file. Configuration for LangChain wrapper is placed in langchain
key, configuration for LlamaIndex in llama_index
key.
Adding a custom model
You can add your own models. See the section Extending PyGPT / Adding a new model
for more info.
There is built-in support for those LLM providers:
OpenAI
(openai)Azure OpenAI
(azure_openai)Google
(google)HuggingFace API
(huggingface_api)Anthropic
(anthropic)Ollama
(ollama)
How to use local or non-GPT models
Llama 3, Mistral, and other local models
How to use locally installed Llama 3 or Mistral models:
Choose a working mode:
Chat with Files
orLangChain
.On the models list - select, edit, or add a new model (with
ollama
provider). You can edit the model settings through the menuConfig -> Models
, then configure the model parameters in theadvanced
section.Download and install Ollama from here: https://github.com/ollama/ollama
For example, on Linux:
$ curl -fsSL https://ollama.com/install.sh | sh
Run the model (e.g. Llama 3) locally on your machine. For example, on Linux:
$ ollama run llama3.1
Return to PyGPT and select the correct model from models list to chat with selected model using Ollama running locally.
Example available models:
llama3.1
codellama
mistral
llama2-uncensored
You can add more models by editing the models list.
List of all models supported by Ollama:
https://github.com/ollama/ollama
IMPORTANT: Remember to define the correct model name in the **kwargs list in the model settings.
Using local embeddings
Refer to: https://docs.llamaindex.ai/en/stable/examples/embeddings/ollama_embedding/
You can use an Ollama instance for embeddings. Simply select the ollama
provider in:
Config -> Settings -> Indexes (LlamaIndex) -> Embeddings -> Embeddings provider
Define parameters like model name and Ollama base URL in the Embeddings provider **kwargs list, e.g.:
name:
model_name
, value:llama3.1
, type:str
name:
base_url
, value:http://localhost:11434
, type:str
Google Gemini and Anthropic Claude
To use Gemini
or Claude
models, select the Chat with Files
mode in PyGPT and select a predefined model.
Remember to configure the required parameters like API keys in the model ENV config fields.
Google Gemini
Required ENV:
GOOGLE_API_KEY
Required **kwargs:
model
Anthropic Claude
Required ENV:
ANTHROPIC_API_KEY
Required **kwargs:
model